Pages

15 December 2024

Rethinking The Quantum Chip


Researchers at the UChicago Pritzker School of Molecular Engineering (UChicago PME) have realized a new design for a superconducting quantum processor, aiming at a potential architecture for the large-scale, durable devices the quantum revolution demands.

Unlike the typical quantum chip design that lays the information-processing qubits onto a 2-D grid, the team from the Cleland Lab has designed a modular quantum processor comprising a reconfigurable router as a central hub. This enables any two qubits to connect and entangle, where in the older system, qubits can only talk to the qubits physically nearest to them.

“A quantum computer won’t necessarily compete with a classical computer in things like memory size or CPU size,” said UChicago PME Prof. Andrew Cleland. “Instead, they take advantage of a fundamentally different scaling: Doubling a classical computer’s computational power requires twice as big a CPU, or twice the clock speed. Doubling a quantum computer only requires one additional qubit.”

Taking inspiration from classical computers, the design clusters qubits around a central router, similar to how PCs talk to each other through a central network hub. Quantum “switches” can connect and disconnect any qubit within a few nanoseconds, enabling high-fidelity quantum gates and the generation of quantum entanglement, a fundamental resource for quantum computing and communication.

No comments:

Post a Comment