Pages

12 August 2024

Quantum Leap: Breakthrough For Secure Communication With ‘Artificial Atoms’

Eurasia Review

Conventional encryption methods rely on complex mathematical algorithms and the limits of current computing power. However, with the rise of quantum computers, these methods are becoming increasingly vulnerable, necessitating quantum key distribution (QKD). QKD is a technology that leverages the unique properties of quantum physics to secure data transmission. This method has been continuously optimized over the years, but establishing large networks has been challenging due to the limitations of existing quantum light sources.]

In a new journal cover article published in Light: Science & Application, a team of scientists in Germany, led by Professor Fei Ding from Leibniz University of Hannover (LUH), Professor Stefan Kück from Physikalisch-Technische Bundesanstalt (PTB), Professor Peter Michler from University of Stuttgart and other co-workers have achieved the first intercity QKD experiment with a deterministic single-photon source, revolutionizing how we protect our confidential information from cyber threats.

Semiconductor quantum dots (QDs), referred as the artificial atoms in the quantum world, show great potential for illuminating quantum lights used in quantum information technologies. This breakthrough reveals the feasibility of semiconductor single-photon sources for a secure long-distance quantum internet in real life.

Professor Fei Ding explained “We work with quantum dots, which are tiny structures similar to atoms but tailored to our needs. For the first time, we used these ‘artificial atoms’ in a quantum communication experiment between two different cities. This setup, known as the ‘Niedersachsen Quantum Link,’ connects Hannover and Braunschweig via optical fibre”

No comments:

Post a Comment